Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.02.22.24303193

ABSTRACT

This study investigated the effectiveness of natural infection in preventing reinfection with the JN.1 variant during a large JN.1 wave in Qatar, using a test-negative case-control study design. The overall effectiveness of previous infection in preventing reinfection with JN.1 was estimated at only 1.8% (95% CI: -9.3-12.6%). This effectiveness demonstrated a rapid decline over time since the previous infection, decreasing from 82.4% (95% CI: 40.9-94.7%) within 3 to less than 6 months after the previous infection to 50.9% (95% CI: -11.8-78.7%) in the subsequent 3 months, and further dropping to 18.3% (95% CI: -34.6-56.3%) in the subsequent 3 months. Ultimately, it reached a negligible level after one year. The findings show that the protection of natural infection against reinfection with JN.1 is strong only among those who were infected within the last 6 months, with variants such as XBB*. However, this protection wanes rapidly and is entirely lost one year after the previous infection. The findings support considerable immune evasion by JN.1.

2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.05.28.23290641

ABSTRACT

Background: This study assessed the evolution of COVID-19 severity and fatality by utilizing rigorous and standardized criteria that were consistently applied throughout the pandemic in Qatar. Methods: A national cohort study was conducted on Qataris, using data on COVID-19 acute-care and ICU hospitalizations, as well as severe, critical, and fatal COVID-19 cases classified according to the World Health Organization criteria. Results: The cumulative incidence of severe, critical, or fatal COVID-19 after 3.14 years of follow-up was 0.45% (95% CI: 0.43-0.47%). The incidence rate for severe, critical, or fatal COVID-19 throughout the pandemic was 1.43 (95% CI: 1.35-1.50) per 1,000 person-years. In the pre-omicron phase, first omicron wave, and combined phases, it was 2.01 (95% CI: 1.90-2.13), 3.70 (95% CI: 3.25-4.22), and 2.18 (95% CI: 2.07-2.30) per 1,000 person-years, respectively. The post-first omicron phase saw a drastic drop to 0.10 (95% CI: 0.08-0.14) per 1,000 person-years, a 95.4% reduction. Among all severe, critical, and fatal cases, 99.5% occurred during the primary infection. The cumulative incidence of fatal COVID-19 was 0.042% (95% CI: 0.036-0.050%), with an incidence rate of 0.13 (95% CI: 0.11-0.16) per 1,000 person-years. In the post-first omicron phase, the incidence rate of fatal COVID-19 decreased by 90.0% compared to earlier stages. Both severity and fatality exhibited an exponential increase with age and a linear increase with the number of coexisting conditions. Conclusions: The conclusion of the first omicron wave was a turning point in the severity of the pandemic. While vaccination and enhanced case management reduced severity gradually, the rapid accumulation of natural immunity during the initial omicron wave appears to have played the crucial role in driving this shift in severity.


Subject(s)
COVID-19
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.04.28.23289254

ABSTRACT

Background: Waning of natural infection protection and vaccine protection highlight the need to evaluate changes in population immunity over time. Population immunity of previous SARS-CoV-2 infection or of COVID-19 vaccination are defined, respectively, as the overall protection against reinfection or against breakthrough infection at a given point in time in a given population. Methods: We estimated these population immunities in Qatar population between July 1, 2020 and November 30, 2022, to discern generic features of the epidemiology of SARS-CoV-2. Effectiveness of previous infection, mRNA primary-series vaccination, and mRNA booster (third-dose) vaccination in preventing infection were estimated, month by month, using matched, test-negative, case-control studies. Findings: Previous-infection effectiveness against reinfection was strong before emergence of Omicron, but declined with time after a wave and rebounded after a new wave. Effectiveness dropped immediately after Omicron emergence from 88.3% (95% CI: 84.8-91.0%) in November 2021 to 51.0% (95% CI: 48.3-53.6%) in December 2021. Primary-series effectiveness against infection was 84.0% (95% CI: 83.0-85.0%) in April 2021, soon after introduction of vaccination, before waning gradually to 52.7% (95% CI: 46.5-58.2%) by November of 2021. Effectiveness declined linearly by ~1 percentage point every 5 days. After Omicron emergence, effectiveness dropped suddenly from 52.7% (95% CI: 46.5-58.2%) in November 2021 to negligible levels in December 2021. Booster effectiveness dropped immediately after Omicron emergence from 83.0% (95% CI: 65.6 -91.6%) in November 2021 to 32.9% (95% CI: 26.7-38.5%) in December 2021, and continued to decline thereafter. Effectiveness of previous infection and vaccination against severe, critical, or fatal COVID-19 were generally >80% throughout the study duration. Interpretation: High population immunity may not be sustained beyond a year. This creates fertile grounds for repeated waves of infection to occur, but these waves may increasingly exhibit a benign pattern of infection. Funding: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core, both at Weill Cornell Medicine-Qatar, Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, Qatar University Biomedical Research Center, and Qatar University Internal Grant ID QUCG-CAS-23/24-114.


Subject(s)
COVID-19 , Breakthrough Pain
4.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.29.23285152

ABSTRACT

Background: Risk of short- and long-term all-cause mortality after a primary SARS-CoV-2 infection is inadequately understood. Methods: A national, matched, retrospective cohort study was conducted in Qatar to assess the risk of all-cause mortality in the national cohort of people infected with SARS-CoV-2 compared with a reference national control cohort of uninfected persons. Associations were estimated using Cox proportional-hazards regression models. Results: Among unvaccinated persons, within 90 days after primary infection, adjusted hazard ratio (aHR) comparing incidence of death in the primary-infection cohort with the infection-naive cohort was 1.19 (95% CI: 1.02-1.39). The aHR was 1.34 (95% CI: 1.11-1.63) in persons more clinically vulnerable to severe COVID-19 and 0.94 (95% CI: 0.72-1.24) in those less clinically vulnerable to severe COVID-19. In subsequent follow-up, the aHR was 0.50 (95% CI: 0.37-0.68). The aHR was 0.41 (95% CI: 0.28-0.58) in months 3-7 after the primary infection and 0.76 (95% CI: 0.46-1.26) in subsequent months. The aHR was 0.37 (95% CI: 0.25-0.54) in persons more clinically vulnerable to severe COVID-19 and 0.77 (95% CI: 0.48-1.24) in those less clinically vulnerable to severe COVID-19. Among vaccinated persons, no evidence was found for differences in incidence of death in the primary-infection versus infection-naive cohorts, even among persons more clinically vulnerable to severe COVID-19. Conclusions: COVID-19 mortality in Qatar appears primarily driven by forward displacement of deaths of individuals with relatively short life expectancy and more clinically vulnerable to severe COVID-19. Vaccination negated the mortality displacement by preventing early deaths.


Subject(s)
Infections , Hallucinations , Death , COVID-19
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.29.22282864

ABSTRACT

Background: Coronavirus Disease 2019 (COVID-19) vaccine antigen dosage may affect protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but direct evidence to quantify this effect is lacking. Methods: A matched, retrospective, cohort study that emulated a randomized control trial was conducted in Qatar between February 3, 2022 and November 8, 2022, to provide a head-to-head, controlled comparison of protection induced by two antigen dosages of the BNT162b2 vaccine. The study compared incidence of omicron infection in the national cohort of adolescents 12 years of age who received the two-dose primary-series of the 30-g BNT162b2 vaccine to that in the national cohort of adolescents 11 years of age who received the two-dose primary-series of the pediatric 10-g BNT162b2 vaccine. Associations were estimated using Cox proportional-hazard regression models. Results: Among adolescents with no record of prior infection, cumulative incidence of infection was 6.0% (95% CI: 4.9-7.3%) for the 30-g cohort and 7.2% (95% CI: 6.1-8.5%) for the 10-g cohort, 210 days after the start of follow-up. Incidence during follow-up was dominated by omicron subvariants including, consecutively, BA.1/BA.2, BA.4/BA.5, BA.2.75*, and XBB. The adjusted hazard ratio comparing incidence of infection in the 30-g cohort to the 10-g cohort was 0.77 (95% CI: 0.60-0.98). Corresponding relative effectiveness was 23.4% (95% CI: 1.6-40.4%). Relative effectiveness was -3.3% (95% CI: -68.0-27.5%) among adolescents with a record of prior infection. Conclusions: Three-fold higher BNT162b2 dosage was associated with ~25% higher protection against infection in infection-naive adolescents of similar age. These findings may inform design of future COVID-19 vaccines and boosters for persons of different age groups.


Subject(s)
Coronavirus Infections , COVID-19
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.14.22282103

ABSTRACT

Background: Long-term effectiveness of COVID-19 mRNA boosters in populations with different prior infection histories and clinical vulnerability profiles is inadequately understood. Methods: A national, matched, retrospective, target trial cohort study was conducted in Qatar to investigate effectiveness of a third mRNA (booster) dose, relative to a primary series of two doses, against SARS-CoV-2 omicron infection and against severe COVID-19. Associations were estimated using Cox proportional-hazards regression models. Results: Booster effectiveness relative to primary series was 41.1% (95% CI: 40.0-42.1%) against infection and 80.5% (95% CI: 55.7-91.4%) against severe, critical, or fatal COVID-19, over one-year follow-up after the booster. Among persons clinically vulnerable to severe COVID-19, effectiveness was 49.7% (95% CI: 47.8-51.6%) against infection and 84.2% (95% CI: 58.8-93.9%) against severe, critical, or fatal COVID-19. Effectiveness against infection was highest at 57.1% (95% CI: 55.9-58.3%) in the first month after the booster but waned thereafter and was modest at only 14.4% (95% CI: 7.3-20.9%) by the sixth month. In the seventh month and thereafter, coincident with BA.4/BA.5 and BA.2.75* subvariant incidence, effectiveness was progressively negative reaching -20.3% (95% CI: -55.0-29.0%) after one year of follow-up. Similar levels and patterns of protection were observed irrespective of prior infection status, clinical vulnerability, or type of vaccine (BNT162b2 versus mRNA-1273). Conclusions: Boosters reduced infection and severe COVID-19, particularly among those clinically vulnerable to severe COVID-19. However, protection against infection waned after the booster, and eventually suggested an imprinting effect of compromised protection relative to the primary series. However, imprinting effects are unlikely to negate the overall public health value of booster vaccinations.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Status Epilepticus
7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.31.22281756

ABSTRACT

Background: Epidemiological evidence for immune imprinting was investigated in immune histories related to vaccination in Qatar from onset of the omicron wave, on December 19, 2021, through September 15, 2022. Methods: Matched, retrospective, cohort studies were conducted to investigate differences in incidence of SARS-CoV-2 reinfection in the national cohort of persons who had a primary omicron infection, but different vaccination histories. History of primary-series (two-dose) vaccination was compared to that of no vaccination, history of booster (three-dose) vaccination was compared to that of two-dose vaccination, and history of booster vaccination was compared to that of no vaccination. Associations were estimated using Cox proportional-hazards regression models. Results: The adjusted hazard ratio comparing incidence of reinfection in the two-dose cohort to that in the unvaccinated cohort was 0.43 (95% CI: 0.38-0.48). The adjusted hazard ratio comparing incidence of reinfection in the three-dose cohort to that in the two-dose cohort was 1.38 (95% CI: 1.16-1.65). The adjusted hazard ratio comparing incidence of reinfection in the three-dose cohort to that in the unvaccinated cohort was 0.53 (95% CI: 0.44-0.63). All adjusted hazard ratios appeared stable over 6 months of follow-up. Divergence in cumulative incidence curves in all comparisons increased markedly when incidence was dominated by BA.4/BA.5 and BA.2.75*. No reinfection in any cohort progressed to severe, critical, or fatal COVID-19. Conclusions: History of primary-series vaccination enhanced immune protection against omicron reinfection, but history of booster vaccination compromised protection against omicron reinfection. These findings do not undermine the short-term public health utility of booster vaccination.


Subject(s)
COVID-19
8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.29.22281606

ABSTRACT

The BA.2.75* sublineage of SARS-CoV-2 B.1.1.529 (omicron) variant escapes neutralizing antibodies. We estimated effectiveness of prior infection in preventing reinfection with BA.2.75* using a test-negative, case-control study design. Effectiveness of prior pre-omicron infection against BA.2.75* reinfection, irrespective of symptoms, was 6.0% (95% CI: 1.5-10.4%). Effectiveness of prior BA.1/BA.2 infection was 49.9% (95% CI: 47.6-52.1%) and of prior BA.4/BA.5 infection was 80.6% (95% CI: 71.2-87.0). Effectiveness of prior pre-omicron infection followed by BA.1/BA.2 infection against BA.2.75* reinfection was 56.4% (95% CI: 50.5-61.6). Effectiveness of prior pre-omicron infection followed by BA.4/BA.5 infection was 91.6% (95% CI: 65.1-98.0). Analyses stratified by time since prior infection indicated waning of protection since prior infection. Analyses stratified by vaccination status indicated that protection from prior infection is higher among those vaccinated, particularly among those who combined index-virus-type vaccination with a prior omicron infection. A combination of pre-omicron and omicron immunity is most protective against BA.2.75* reinfection. Viral immune evasion may have accelerated recently to overcome high immunity in the global population, thereby also accelerating waning of natural immunity.

9.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.23.22279026

ABSTRACT

We investigated epidemiological evidence for immune imprinting by comparing incidence of re-reinfection in the national cohort of individuals with a documented Omicron (BA.1/BA.2) reinfection after a pre-Omicron primary infection (designated as the reinfection cohort), to incidence of reinfection in the national cohort of individuals with a documented Omicron (BA.1/BA.2) primary infection (designated as the primary-infection cohort). This was done using a matched, retrospective cohort study that emulated a randomized target trial. Vaccinated individuals were excluded. Associations were estimated using Cox proportional-hazard regression models. Cumulative incidence of infection was 1.1% (95% CI: 0.8-1.4%) for the reinfection cohort and 2.1% (95% CI: 1.8-2.3%) for the primary-infection cohort, 135 days after the start of follow-up. The adjusted hazard ratio (aHR) for infection was 0.52 (95% CI: 0.40-0.68), comparing incidence in the reinfection cohort to that in the primary-infection cohort. The aHR was 0.59 (95% CI: 0.40-0.85) in a subgroup analysis in which primary infection in the reinfection cohort was restricted to only the index virus or Alpha variant. In the first 70 days of follow-up, when incidence was dominated by BA.2, the aHR was 0.92 (95% CI: 0.51-1.65). However, cumulative incidence curves diverged when BA.4/BA.5 subvariants dominated incidence (aHR, 0.46 (95% CI: 0.34-0.62)). There was no evidence that immune imprinting compromises protection against Omicron subvariants. However, there was evidence that having two infections, one with a pre-Omicron variant followed by one with an Omicron subvariant, elicits stronger protection against future Omicron-subvariant reinfection than having had only one infection with an Omicron subvariant.


Subject(s)
Infections
10.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.26.22278045

ABSTRACT

Background: The BNT162b2 COVID-19 vaccine is authorized for children 5-11 years of age and adolescents 12-17 years of age, but in different dose sizes. We assessed BNT162b2 real-world effectiveness against SARS-CoV-2 infection among children and adolescents in Qatar. Methods: Three matched, retrospective, target-trial, cohort studies were conducted to compare incidence of SARS-CoV-2 infection in the national cohort of vaccinated individuals to incidence in the national cohort of unvaccinated individuals. Associations were estimated using Cox proportional-hazards regression models. Results: Effectiveness of the 10 micrograms dose for children against Omicron infection was 25.7% (95% CI: 10.0-38.6%). It was highest at 49.6% (95% CI: 28.5-64.5%) right after the second dose, but waned rapidly thereafter and was negligible after 3 months. Effectiveness was 46.3% (95% CI: 21.5-63.3%) among those aged 5-7 years and 16.6% (-4.2-33.2%) among those aged 8-11 years. Effectiveness of the 30 micrograms dose for adolescents against Omicron infection was 30.6% (95% CI: 26.9-34.1%), but many adolescents were vaccinated months earlier. Effectiveness waned with time after the second dose. Effectiveness was 35.6% (95% CI: 31.2-39.6%) among those aged 12-14 years and 20.9% (13.8-27.4%) among those aged 15-17 years. Effectiveness of the 30 micrograms dose for adolescents against pre-Omicron infection was 87.6% (95% CI: 84.0-90.4%) and waned relatively slowly after the second dose. Conclusions: Pediatric vaccination is associated with modest and rapidly waning protection against Omicron infection. Adolescent vaccination is associated with stronger and more durable protection, perhaps because of the larger dose size. Age at such young age appears to play a role in determining vaccine protection, with greater protection observed in younger than older children or adolescents.


Subject(s)
COVID-19
11.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.11.22277448

ABSTRACT

This study estimates the effectiveness of previous infection with SARSCoV2 in preventing reinfection with Omicron BA.4/BA.5 subvariants using a test negative, case control study design. Cases (SARSCoV2 positive test results) and controls (SARSCoV2 negative test results) were matched according to sex, 10 year age group, nationality, comorbid condition count, calendar week of testing, method of testing, and reason for testing. Effectiveness was estimated using the S gene target failure (SGTF) infections between May 7, 2022 and July 4, 2022. SGTF status provides a proxy for BA.4/BA.5 infections, considering the negligible incidence of other SGTF variants during the study. Effectiveness was also estimated using all diagnosed infections between June 8, 2022 and July 4, 2022, when BA.4/BA.5 dominated incidence. Effectiveness of a previous pre-Omicron infection against symptomatic BA.4/BA.5 reinfection was 15.1% (95% CI: -47.1 to 50.9%), and against any BA.4/BA.5 reinfection irrespective of symptoms was 28.3% (95% CI: 11.4 to 41.9%). Effectiveness of a previous Omicron infection against symptomatic BA.4/BA.5 reinfection was 76.1% (95% CI: 54.9 to 87.3%), and against any BA.4/BA.5 reinfection was 79.7% (95% CI: 74.3 to 83.9%). Results using all diagnosed infections when BA.4/BA.5 dominated incidence confirmed the same findings. Sensitivity analyses adjusting for vaccination status confirmed study results. Protection of a previous infection against BA.4/BA.5 reinfection was modest when the previous infection involved a preOmicron variant, but strong when the previous infection involved the Omicron BA.1 or BA.2 subvariants. Protection of a previous infection against BA.4/BA.5 was lower than that against BA.1/BA.2, consistent with BA.4/BA.5 greater capacity for immune system evasion than that of BA.1/BA.2.


Subject(s)
Severe Acute Respiratory Syndrome
12.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.06.22277306

ABSTRACT

BACKGROUND: The future of the SARS-CoV-2 pandemic hinges on virus evolution and duration of immune protection of natural infection against reinfection. We investigated duration of protection afforded by natural infection, the effect of viral immune evasion on duration of protection, and protection against severe reinfection, in Qatar, between February 28, 2020 and June 5, 2022. METHODS: Three national, matched, retrospective cohort studies were conducted to compare incidence of SARS-CoV-2 infection and COVID-19 severity among unvaccinated persons with a documented SARS-CoV-2 primary infection, to incidence among those infection-naive and unvaccinated. Associations were estimated using Cox proportional-hazard regression models. RESULTS: Effectiveness of pre-Omicron primary infection against pre-Omicron reinfection was 85.5% (95% CI: 84.8-86.2%). Effectiveness peaked at 90.5% (95% CI: 88.4-92.3%) in the 7th month after the primary infection, but waned to ~70% by the 16th month. Extrapolating this waning trend using a Gompertz curve suggested an effectiveness of 50% in the 22nd month and <10% by the 32nd month. Effectiveness of pre-Omicron primary infection against Omicron reinfection was 38.1% (95% CI: 36.3-39.8%) and declined with time since primary infection. A Gompertz curve suggested an effectiveness of <10% by the 15th month. Effectiveness of primary infection against severe, critical, or fatal COVID-19 reinfection was 97.3% (95% CI: 94.9-98.6%), irrespective of the variant of primary infection or reinfection, and with no evidence for waning. Similar results were found in sub-group analyses for those [≥]50 years of age. CONCLUSIONS: Protection of natural infection against reinfection wanes and may diminish within a few years. Viral immune evasion accelerates this waning. Protection against severe reinfection remains very strong, with no evidence for waning, irrespective of variant, for over 14 months after primary infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Infections
13.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.22.22272745

ABSTRACT

BACKGROUND: Protection offered by five different forms of immunity, combining natural and vaccine immunity, was investigated against SARS-CoV-2 Omicron symptomatic BA.1 infection, symptomatic BA.2 infection, BA.1 hospitalization and death, and BA.2 hospitalization and death, in Qatar, between December 23, 2021 and February 21, 2022. METHODS: Six national, matched, test-negative case-control studies were conducted to estimate effectiveness of BNT162b2 (Pfizer-BioNTech) vaccine, mRNA-1273 (Moderna) vaccine, natural immunity due to prior infection with pre-Omicron variants, and hybrid immunity from prior infection and vaccination. RESULTS: Effectiveness of only prior infection against symptomatic BA.2 infection was 46.1% (95% CI: 39.5-51.9%). Effectiveness of only two-dose BNT162b2 vaccination was negligible at -1.1% (95% CI: -7.1-4.6), but nearly all individuals had received their second dose several months earlier. Effectiveness of only three-dose BNT162b2 vaccination was 52.2% (95% CI: 48.1-55.9%). Effectiveness of hybrid immunity of prior infection and two-dose BNT162b2 vaccination was 55.1% (95% CI: 50.9-58.9%). Effectiveness of hybrid immunity of prior infection and three-dose BNT162b2 vaccination was 77.3% (95% CI: 72.4-81.4%). Meanwhile, prior infection, BNT162b2 vaccination, and hybrid immunity all showed strong effectiveness >70% against any severe, critical, or fatal COVID-19 due to BA.2 infection. Similar levels and patterns of effectiveness were observed for BA.1 and for the mRNA-1273 vaccine. CONCLUSIONS: There are no discernable differences in the effects of prior infection, vaccination, and hybrid immunity against BA.1 versus BA.2. Hybrid immunity resulting from prior infection and recent booster vaccination confers the strongest protection against either subvariant. Vaccination enhances protection of those with a prior infection.


Subject(s)
COVID-19
14.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.17.22272529

ABSTRACT

BACKGROUND: Protection conferred by natural SARS-CoV-2 infection versus COVID-19 vaccination has not been investigated in rigorously controlled studies. We compared head-to-head protection conferred by natural infection to that from the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines in Qatar, between February 28, 2020 and March 6, 2022. METHODS: Two national matched retrospective target-trial cohort studies were conducted to compare incidence of SARS-CoV-2 infection and COVID-19 hospitalization and death among those with a documented primary infection to incidence among those with a two-dose primary-series vaccination. Associations were estimated using Cox proportional-hazards regression models. RESULTS: The overall adjusted hazard ratio (AHR) for infection was 0.46 (95% CI: 0.45-0.48) comparing those with a prior infection to those vaccinated with BNT162b2, and 0.51 (95% CI: 0.48-0.53) comparing those with a prior infection to those vaccinated with mRNA-1273. For BNT162b2, the AHR decreased gradually from 0.55 (95% CI: 0.46-0.65) in the fourth month after primary infection/vaccination to 0.31 (95% CI: 0.27-0.37) in the eighth month, while for mRNA-1273, it decreased from 0.80 (95% CI: 0.59-1.07) to 0.35 (95% CI: 0.29-0.41) over the same time period. During the Omicron wave, the AHR was ~0.50 for BNT162b2 and ~0.60 for mRNA-1273. The overall AHR for any severe, critical, or fatal COVID-19 (against all variants) was 0.32 (95% CI: 0.10-1.00) for BNT162b2, and 0.58 (95% CI: 0.14-2.43) for mRNA-1273. CONCLUSIONS: Natural infection was associated with stronger and more durable protection against infection, regardless of the variant, than mRNA primary-series vaccination. Nonetheless, vaccination remains the safest and optimal tool of protection against infection and COVID-19 hospitalization and death.


Subject(s)
COVID-19
15.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.13.22272308

ABSTRACT

The SARS-CoV-2 Omicron (B.1.1.529) variant has two subvariants, BA.1 and BA.2, that are genetically quite divergent. We conducted a matched, test-negative, case-control study to estimate duration of protection of mRNA COVID-19 vaccines, after the second dose and after a third/booster dose, against BA.1 and BA.2 infections in Qatar population. BNT162b2 effectiveness against symptomatic BA.1 infection was highest at 46.6% (95% CI: 33.4-57.2%) in the first three months after the second dose, but then declined to ~10% or below thereafter. Effectiveness rapidly rebounded to 59.9% (95% CI: 51.2-67.0%) in the first month after the booster dose, but then started to decline again. BNT162b2 effectiveness against symptomatic BA.2 infection was highest at 51.7% (95% CI: 43.2-58.9%) in the first three months after the second dose, but then declined to ~10% or below thereafter. Effectiveness rapidly rebounded to 43.7% (95% CI: 36.5-50.0%) in the first month after the booster dose, but then declined again. Effectiveness against COVID-19 hospitalization and death was in the range of 70-80% any time after the second dose, and was greater than 90% after the booster dose. Similar patterns of protection were observed for the mRNA-1273 vaccine. mRNA vaccines provide only moderate and short-lived protection against symptomatic Omicron infections, with no discernable differences in protection against either the BA.1 or BA.2 subvariants. Vaccine protection against COVID-19 hospitalization and death is strong and durable after the second dose, but is more robust after a booster dose.


Subject(s)
COVID-19
16.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.24.22271440

ABSTRACT

BACKGROUND The SARS-CoV-2 Omicron (B.1.1.529) variant has two main sub-lineages, BA.1 and BA.2 with significant genetic distance between them. This study investigated protection of infection with one sub-lineage against reinfection with the other sub-lineage in Qatar during a large BA.1 and BA.2 Omicron wave, from December 19, 2021 to February 21, 2022. METHODS Two national matched, retrospective cohort studies were conducted to estimate effectiveness of BA.1 infection against reinfection with BA.2 (N=20,197; BA.1-against-BA.2 study), and effectiveness of BA.2 infection against reinfection with BA.1 (N=100,925; BA.2-against-BA.1 study). Associations were estimated using Cox proportional-hazards regression models. RESULTS In the BA.1-against-BA.2 study, cumulative incidence of infection was estimated at 0.03% (95% CI: 0.01-0.07%) for the BA.1-infected cohort and at 0.62% (95% CI: 0.51-0.75%) for the uninfected-control cohort, 15 days after the start of follow-up. Effectiveness of BA.1 infection against reinfection with BA.2 was estimated at 94.9% (95% CI: 88.4-97.8%). In the BA.2-against-BA.1 study, cumulative incidence of infection was estimated at 0.03% (95% CI: 0.02-0.04%) for the BA.2-infected cohort and at 0.17% (95% CI: 0.15-0.21%) for the uninfected-control cohort, 15 days after the start of follow-up. Effectiveness of BA.2 infection against reinfection with BA.1 was estimated at 85.6% (95% CI: 77.4-90.9%). CONCLUSIONS Infection with an Omicron sub-lineage appears to induce strong, but not full protection against reinfection with the other sub-lineage, for at least several weeks after the initial infection.

17.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.07.22270568

ABSTRACT

BACKGROUND: Qatar has been experiencing a large SARS-CoV-2 Omicron (B.1.1.529) wave that started on December 19, 2021. We assessed duration of protection of BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccines after second dose and after third/booster dose against symptomatic Omicron infection and against COVID-19 hospitalization and death, between December 23, 2021 and February 2, 2022. METHODS: Vaccine effectiveness was estimated using the test-negative, case-control study design, applying the same methodology used earlier to assess waning of BNT162b2 and mRNA-1273 effectiveness in the same population during earlier infection waves. RESULTS: BNT162b2 effectiveness against symptomatic Omicron infection was highest at 61.9% (95% CI: 49.9-71.1%) in the first month after the second dose, but then gradually declined and was at 10% or less starting from the 5th month after the second dose. After the booster, effectiveness rapidly rebounded to peak at about 55% between 2-5 weeks after the booster, but then started to decline again thereafter. Effectiveness against severe, critical, or fatal COVID-19 was maintained at >70% after the second dose and at >90% after the booster with no evidence for declining effectiveness over time. mRNA-1273 effectiveness against symptomatic Omicron infection was highest at 44.8% (95% CI: 16.0-63.8%) in the first three months after the second dose, before gradually declining to negligible levels thereafter. After the booster, effectiveness rapidly rebounded to peak at about 55% between 2-5 weeks after the booster, but then declined again thereafter. Effectiveness against severe, critical, or fatal COVID-19 was high at >60% after the second dose and at >80% after the booster, but the confidence intervals were wide owing to the small number of cases. CONCLUSIONS: BNT162b2 and mRNA-1273 vaccines show a similar level and pattern of protection against symptomatic Omicron infection. Protection against Omicron is lower than that against Alpha, Beta, and Delta variants, and wanes more rapidly than against earlier variants after the second and booster doses. Meanwhile, protection against hospitalization and death appears robust and durable after both the second and booster doses.


Subject(s)
COVID-19 , Death
18.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.18.22269452

ABSTRACT

BACKGROUND: Waning of COVID-19 vaccine protection and emergence of SARS-CoV-2 Omicron (B.1.1.529) variant have expedited efforts to scale up booster vaccination. This study compared protection afforded by booster doses of the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines, compared to the primary series of only two doses in Qatar, during a large, rapidly growing Omicron wave. METHODS: In a population of 2,232,224 vaccinated persons with at least two doses, two matched, retrospective cohort studies were implemented to investigate effectiveness of booster vaccination against symptomatic SARS-CoV-2 infection and against COVID-19 hospitalization and death, up to January 9, 2022. Association of booster status with infection was estimated using Cox proportional-hazards regression models. RESULTS: For BNT162b2, cumulative symptomatic infection incidence was 2.9% (95% CI: 2.8-3.1%) in the booster-dose cohort and 5.5% (95% CI: 5.3-5.7%) in the primary-series cohort, after 49 days of follow-up. Adjusted hazard ratio for symptomatic infection was 0.50 (95% CI: 0.47-0.53). Booster effectiveness relative to primary series was 50.1% (95% CI: 47.3-52.8%). For mRNA-1273, cumulative symptomatic infection incidence was 1.9% (95% CI: 1.7-2.2%) in the booster-dose cohort and 3.5% (95% CI: 3.2-3.9%) in the primary-series cohort, after 35 days of follow-up. The adjusted hazard ratio for symptomatic infection was 0.49 (95% CI: 0.43-0.57). Booster effectiveness relative to primary series was 50.8% (95% CI: 43.4-57.3%). There were fewer cases of severe COVID-19 in booster-dose cohorts than in primary-series cohorts, but cases of severe COVID-19 were rare in all cohorts. CONCLUSIONS: mRNA booster vaccination is associated with modest effectiveness against symptomatic infection with Omicron. The development of a new generation of vaccines targeting a broad range of variants may be warranted.


Subject(s)
COVID-19 , Death
19.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.05.22268782

ABSTRACT

BACKGROUNDNatural SARS-CoV-2 infection elicits strong protection against reinfection with the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants. However, the Omicron (B.1.1.529) variant harbors multiple mutations that can mediate immune evasion. We estimated effectiveness of prior infection in preventing reinfection (PES) with Omicron and other SARS-CoV-2 variants in Qatar. METHODSPES was estimated using the test-negative, case-control study design, employing a methodology that was recently investigated and validated for derivation of robust estimates for PES. Cases (PCR-positive persons with a variant infection) and controls (PCR-negative persons) were exact-matched by sex, 10-year age group, nationality, and calendar time of PCR test, to control for known differences in the risk of exposure to SARS-CoV-2 infection in Qatar. RESULTSPES against symptomatic reinfection was estimated at 90.2% (95% CI: 60.2-97.6) for Alpha, 84.8% (95% CI: 74.5-91.0) for Beta, 92.0% (95% CI: 87.9-94.7) for Delta, and 56.0% (95% CI: 50.6-60.9) for Omicron. Only 1 Alpha, 2 Beta, 0 Delta, and 2 Omicron reinfections progressed to severe COVID-19. None progressed to critical or fatal COVID-19. PES against hospitalization or death due to reinfection was estimated at 69.4% (95% CI: -143.6-96.2) for Alpha, 88.0% (95% CI: 50.7-97.1) for Beta, 100% (95% CI: 43.3-99.8) for Delta, and 87.8% (95% CI: 47.5-97.1) for Omicron. CONCLUSIONSProtection afforded by prior infection in preventing symptomatic reinfection with Alpha, Beta, or Delta is robust, at about 90%. While such protection against reinfection with Omicron is lower, it is still considerable at nearly 60%. Prior-infection protection against hospitalization or death at reinfection appears robust, regardless of variant.


Subject(s)
Death , COVID-19
20.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.02.22268622

ABSTRACT

Background The Coronavirus Disease 2019 (COVID-19) pandemic has highlighted an urgent need to use infection testing databases to rapidly estimate effectiveness of prior infection in preventing reinfection ( PE S ) by novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods Mathematical modeling was used to demonstrate the applicability of the test-negative, case-control study design to derive PE S . Modeling was also used to investigate effects of bias in PE S estimation. The test-negative design was applied to national-level testing data in Qatar to estimate PE S for SARS-CoV-2 infection and to validate this design. Results Apart from the very early phase of an epidemic, the difference between the test-negative estimate for PE S and the true value of PE S was minimal and became negligible as the epidemic progressed. The test-negative design provided robust estimation of PE S even when PE S began to wane after prior infection. Assuming that only 25% of prior infections are documented, misclassification of prior infection status underestimated PE S , but the underestimate was considerable only when >50% of the population was ever infected. Misclassification of latent infection, misclassification of current active infection, and scale-up of vaccination all resulted in negligible bias in estimated PE S . PE S against SARS-CoV-2 Alpha and Beta variants was estimated at 97.0% (95% CI: 93.6-98.6) and 85.5% (95% CI: 82.4-88.1), respectively. These estimates were validated using a cohort study design. Conclusions The test-negative design offers a feasible, robust method to estimate protection from prior infection in preventing reinfection.


Subject(s)
COVID-19 , Coronavirus Infections
SELECTION OF CITATIONS
SEARCH DETAIL